Soil Fumigation

September 2010

FOR PERSONS SEEKING CERTIFICATION BY THE STATE OF HAWAIʻI DEPARTMENT OF AGRICULTURE TO BUY, USE, OR SUPERVISE
THE USE OF SOIL FUMIGANTS CLASSIFIED AS RESTRICTED USE PESTICIDE

This study guide was developed for the Pesticide Risk Reduction Education program of the
College of Tropical Agriculture and Human Resources, University of Hawaiʻi at Mānoa.
Please direct any question or comment about this guide to:
Charles Nagamine
Department of Plant and Environmental Protection Sciences
3190 Maile Way Room 307

DEVELOPMENT OF THIS GUIDE WAS SUPPORTED IN PART BY THE STATE OF HAWAII DEPARTMENT OF AGRICULTURE.


This guide mainly consists of text and pictures adapted from the publication “Soil Fumigation” (SM-61, June 1997), O. Norman Nesheim, Thomas W. Dean, and Michael J. Aerts, Institute of Food and Agricultural Sciences, Cooperative Extension Service, University of Florida.

Chapter 1 Importance of Fumigant Product Labeling was added.

The section “Hazardous Materials Management” in Chapter 6 was significantly revised.

Where trade names are used, no endorsement is intended, nor criticism implied of similar products not named.


Table of Contents

Chapter 1: Importance of Fumigant Product Labeling

Chapter 2: Soil Fumigation

  • Learning Objectives
  • Introduction
  • Fumigant Formulations and Descriptions
  • Liquified gases
  • Volatile liquids
  • Solids
  • Pests Controlled by Soil Fumigation
  • Nematodes 
  • Soil Fungi 
  • Bacteria 
  • Insects 
  • Weeds
  • Factors Influencing Soil Fumigation
  • Pest habits
  • Soil texture
  • Soil condition
  • Plant debris
  • Soil moisture
  • Soil temperature
  • Application depth
  • Dosage
  • Soil sealing
  • Exposure period
  • Soil aeration
  • Phytotoxicity
  • Test Your Knowledge

Chapter 3: Application Principles

  • Learning Objectives
  • Application Techniques and Equipment
  • Liquefied Gas
  • Above ground applications
  • Injection applications
  • Auger applications
  • Volatile Liquids
  • Trench applications
  • Handgun applications
  • Shank (chisel) applications
  • Sweep or blade applications
  • Drench applications
  • Chemigation
  • Volatile Solids
  • Broadcast applications
  • Test Your Knowledge

Chapter 4: Equipment Calibration

  • Learning Objectives
  • Calibration Methods
  • Application over a known area
  • Useful conversions for calibration
  • Calculate flow rate per unit time
  • Practice Problems
  • Test Your Knowledge

Chapter 5: Soil Fumigant Uses and Characteristics

  • Learning Objectives
  • Methyl Bromide
  • Chloropicrin
  • Metam-sodium
  • 1,3-D (1,3-Dichloropro-pene, Telone®)
  • Dazomet
  • Test Your Knowledge

Chapter 6: Fumigation Safety

  • Learning Objectives
  • Introduction
  • Safety Precautions For Applicators
  • Personal Protective Equipment
  • Respiratory Protection for Fumigant Application
  • Threshold Limit Values
  • Fumigant Poisoning
  • Recognizing Fumigant Poisoning Symptoms
  • Methyl Bromide
  • Chloropicrin
  • Metam-sodium
  • 1,3-D (1,3e-Dichloropropene, Telone®)
  • Dazomet
  • First Aid
  • Personal Sanitation
  • Other Safety Recommendations
  • Good Practices To Follow When Fumigating
  • Test Your Knowledge

Chapter 7: Storing, Handling, and Disposing of Fumigants

  • Learning Objectives
  • Storage of Soil Fumigants
  • Disposal
  • Hazardous Materials Management
  • Spill and Leak Clean-Up Procedures
  • Test Your Knowledge

Glossary


CHAPTER 1: Importance of Fumigant Product Labeling

Parts of this study guide discuss instructions and restrictions for handling fumigant pesticides. These discussions are general in nature because details for using one fumigant product may be different from those for another. Therefore, refer to the labeling supplied with your fumigant product as you plan a fumigation job. Let the product’s labeling be your guide to an effective and safe fumigation job.

Review all of the labeling do’s and don’t’s about storage, use, and disposal. Be sure you can comply with the those that apply to you. Some will require you to have additional supplies or equipment such as special respirators or gas detection equipment. Others will require you to post special signs around the fumigation site before the fumigant job begins.

Illness, injury, or pollution resulting from improper storage, use, or disposal or the fumigant product will be investigated and the fumigator may be held partly or entirely responsible if he or she did not comply with the labeling.

To get help interpreting a complex instruction or restriction, consult the product manufacturer’s representative, or talk to a pesticide education specialist at one of these the Hawaii Department of Agriculture offices:

  • Honolulu 973-9409 or 973-9424 (for Kauaʻi and Oʻahu)
  • Kahului 873-3960 (for Maui, Molokaʻi, and Lanaʻi)
  • Hilo 974-4143 (for Hawaiʻi)

808 is the area code for all of these phone numbers.


CHAPTER 2: Soil Fumigation

Learning Objectives

After you complete your study of this chapter you should be able to:

  • Name and describe the three fumigant formulations.
  • Name the pests controlled by soil fumigation.
  • Describe soil characteristics that influence penetration and movement of fumigants.
  • Describe the factors that influence fumigant placement.
  • Know the importance of soil sealing in soil fumigation

Introduction

Soil fumigation is a chemical control strategy used independently or in conjunction with cultural and physical control methods to reduce populations of soil organisms. Soil fumigants can effectively control soil-borne organisms, such as nematodes, fungi, bacteria, insects, weed seeds, and weeds.

Different fumigants have varying effects on the control of these pests. Some are pest-specific, while others are broad spectrum biocides and kill most soil organisms. Soil fumigants are used in agriculture, nurseries, ornamental plant beds, forest systems, and other areas where soil-borne pests can harm or devastate desirable plants. Because of treatment costs, applicators use soil fumigants primarily on high value crops, such as vegetables, fruits, and ornamentals. Control of soil-borne pests will improve plant appearance, quality and vigor, crop yields, and ultimately profitability.

Soil fumigation uses pesticide formulations that volatilize from a liquid or solid into a gas state. Soil fumigants are applied to the soil as liquefied gases, volatile liquids, or granules. Due to the high volatility of these compounds, the fumigant must be incorporated into the soil during or immediately following application. At or shortly after application, these chemicals volatilize, allowing toxic molecules to move through the air pores in the soil. Some molecules dissolve in the water film surrounding the soil particles. Soil pests are killed when they come in contact with a toxic concentration for a long enough exposure period.

Fumigant Formulations and Descriptions

Liquefied gases are gaseous under normal temperatures and pressures. The gas is liquid when held in a pressurized container. When released from a container, the liquid immediately converts to gas.

Volatile liquids are liquid under normal temperatures and pressures but converts into a gas when in the soil.

Solids are granular under normal temperatures but volatilize into a gas when in the soil.

Characteristics of Fumigants. Soon after fumigants are applied to the soil, they begin to diffuse through the soil; they move from zones of high concentration to zones of lower concentration. Also, fumigants are decomposed by soil microorganisms or by chemical actions within the soil. Eventually, their concentration in the soil becomes negligible because they diffuse into the atmosphere and they decompose within the soil. Since seeds and plants in fumigated soil would be harmed by even low concentrations of fumigant in the soil, growers must delay planting until the fumigant has sufficiently decomposed and diffused out of the soil. This preplant interval (aeration period) will vary with the fumigant, its rate of application, and environmental conditions. Most soil fumigants are labeled for use only as preplant (before planting) treatments because treatments made at planting or soon after planting would be toxic to the seeds and transplants.

Fumigation only controls those target pests present in the soil at the time of fumigation. Fumigants have no residual activity and will not control pests that infest the fumigated soil after the aeration period.

Pests Controlled by Soil Fumigation

Soil pests, such as plant-parasitic nematodes, fungi, insects, bacteria, weeds, and weed seeds, can be controlled effectively by proper soil fumigation. The label of each fumigant will state the pests it will control.

Proper identification of a pest is crucial to the success of the fumigation process. Understanding the life cycles and habits of different pests helps determine the proper application timing to target the susceptible stage of the pest. Also, proper application depth can be determined to ensure adequate contact with the pest.

For some pests, especially nematodes, a soil analysis is necessary for proper identification. The diagnosis of nematode injury based only on nonspecific foliar symptoms is usually quite difficult, if not impossible. The affected host must be carefully examined to eliminate other possible causes of decline. An accurate diagnosis of a nematode problem, however, can only be made on the basis of a soil analysis. For assistance in pest identification and taking soil samples for analysis, contact your county extension agent.

Nematodes are tiny, transparent, unsegmented, round worms, varying in size from 1/300 to 1/3 inch long. Several thousand species are known, but only a few of these are plant parasites. Plant parasitic nematodes attack small, succulent feeder roots. Their needle-like mouthparts puncture plant cells and suck out the contents. They reproduce by laying eggs.

Nematodes live either in the water film in and around soil particles and plant tissue, or within plant tissue. Ectoparasitic plant nematodes remain on the outside of the plant. Most ectoparasitic nematodes migrate freely over the root surface, while some species remain at one point to feed. Endoparasitic nematodes move into the plant tissues to feed. They may move in and out of roots or remain sedentary within the root. At certain life stages, endoparasitic nematodes are present in the soil.

Soil Fungi. Fungi are plant-like organisms that lack chlorophyll. This means they must obtain nutrients from other living sources, such as plants, animals, or organic matter. Most fungi reproduce by spores. Fungal spores germinate into thread-like filaments called hyphae that grow, secrete enzymes, absorb nutrients, and release chemicals that induce plant diseases. Some soil fumigants are effective in controlling soil fungi.

Bacteria. Some bacteria that cause plant diseases also live in the soil. Bacteria are small, one- celled organisms that reproduce by simple fission. They obtain nutrients from plant cells and generally infect plants by entering through a wounds or a plants’ natural openings.

Insects. There are several insects and insect relatives that live in the soil and are pests of plants. The insects are generally immature stages of beetles and flies. These two groups of insects undergo complete metamorphosis, which means they go through four distinct stages of development from the egg to an adult. These stages are egg, larva, pupa, and adult. It is usually the larval stage that causes damage, though some adults will also feed on underground plant parts. Some soil fumigants are successful in controlling soil insects.

Weeds are unwanted plants that compete with desirable plants for space, water, nutrients, and light. These pests increase maintenance costs and may act as alternate hosts for insects and diseases. Some fumigants control weed seeds and germinating weeds.

Factors Influencing Soil Fumigation

Many factors affect soil fumigation and its effectiveness for pest control. The pest and its habits will affect fumigant selection, application rate, fumigant placement, and necessary length of exposure. Soil factors also play a key role in fumigation. Soil texture, soil condition, debris, soil moisture, and soil temperature may affect the volatility, movement, and availability of the fumigant once applied. Fumigant dosage is both pest- and soil-dependent. The following section discusses some of these factors in greater detail.After fumigation, aeration is important to make sure phytotoxicity does not occur.

Pest habits. Proper identification of the pest(s) is crucial. Once you have properly identified the pest, you can find out about pest life cycles and habits. Understanding the pest’s habits provides information for proper timing of fumigant application to target the susceptible stage of the pest and for proper application depth to ensure adequate contact with the pest organisms. (Contact your local Cooperative Extension agent for assistance in pest identification.)

Soil texture influences fumigant movement and availability due to its effects on the amount of soil pore space (air spaces) and the number of adsorption (binding) sites. Fine textured soils, such as clay, have many adsorption sites per unit area and many pore spaces. Coarse-textured soils have relatively few binding sites and few air spaces. For these reasons, soils high in clay content require more fumigant to attain a lethal dose. Generally, coarser- textured soils require less fumigant than fine-textured soils. Organic matter in soil greatly increases soil holding capacity and number of binding sites; thus soils high in organic matter require more fumigant. Read the label for any statements regarding amount of clay content or organic matter in soils.

Soil condition is a major factor in fumigant penetration and diffusion. Fumigants do not move uniformly through the soil. Compacted soil limits the amount of diffusion and penetration. Cultivation of soil prior to fumigation is essential. Cultivate the soil to the level where the fumigant needs to diffuse. Break up or remove soil lumps, clods, and undecomposed organic matter. Pulverize and smooth the soil surface before fumigation to aid post application sealing, if required. Sealing prevents fumigant vapor from escaping too quickly. Improper soil preparation is the major reason for fumigation failures. Fumigate soils before applying manure, sawdust, or other organic matter.

Plant debris can pose problems to shank-type fumigation, if excessive amounts of fresh or decaying plant material are present. Organic matter binds with the fumigant, making it unavailable for free movement. If a high concentration of organic matter is near the soil surface, it may impede proper diffusion of the fumigant and it may create avenues (chimneys) for gas to escape. Work all vegetation into the soil thoroughly. Allow vegetation plenty of time to decompose before fumigation. Do not fumigate soils that contain excessive amounts of organic matter.

Soil moisture affects the diffusion of the fumigant. Most fumigations are conducted when the soil reaches 50%–75% field capacity of moisture. Fumigation requires a certain amount of soil moisture to ensure that the fumigant does not escape too quickly. Though too much moisture may impede fumigant movement because soil pores filled with water do not allow the gas to move. Cold, wet soils retard diffusion and require a longer than normal exposure period. The soil moisture requirements necessary for effective fumigation differ among fumigants; read the product label directions carefully.

Soil temperature correlates directly with fumigant volatility and movement. Soil temperature determines the fumigant state (solid, liquid or gas).As temperatures increase, fumigant volatility and diffusion increase. Generally, soil temperatures of 45–80°F at the depth of fumigant injection are best for volatilization. Temperatures below the label minimum reduce volatilization and penetration, and the fumigant persists longer in the soil profile. Temperatures above the label maximum increase fumigant volatilization and soil penetration to the point where it breaks down or is lost from the soil before it reaches a level that is toxic to the target pest(s). The effect of soil temperature differs among fumigants; some are active at 40°F, while others remain in the nongaseous state at that temperature.

Application depth is variable. Proper fumigant placement depends on a combination of factors, including where the pest organism lives, soil temperature, dosage, vapor pressure, and soil type. If the application is deep, the rate is too low, and the pest organisms are relativelyshallow, the fumigant may not diffuse far enough upward to contact the pest at a sufficient dose (concentration, in ppm× time, in hours) to obtain control. If the application is too shallow, the fumigant may not diffuse far enough downward to reach the pests. The fumigant may actually dissipate upward and out of the soil. Split depth applications may be necessary if soil condition is marginal and if broad depth control is required. For example, the fumigant may need to be placed at depths of 6 to 8 inches and 16 to 24 inches for even diffusion. Read the label for application depth directions and know the pest habits. For proper placement, you must know the pest habits and follow the product label instructions.

Dosage depends on several factors. Different soil types require different rates, given the amount of pore space and amount of adsorption to clay and organic matter. Some pests, such as endoparasitic and cyst nematodes, require higher dosages than other pests. Rates also vary depending on what plants or crops will be planted. Perennial plants, trees, and vines require more fumigant than annual plants for which less control, and short-term effects are acceptable. Follow label directions. Performance data indicate label rates are effective. Applications above label rates are illegal and may damage the crop. Applications below label rates may not provide adequate pest control.

Soil sealing is especially important in soil fumigation. Seal the soil immediately following fumigation, the sooner the better. The seal caps the soil surface, minimizing the amount of fumigant that escapes into the atmosphere. For effective pest control, keep the seal in place long enough to maintain a lethal gas concentration for the exposure period. It may be necessary to cover the area with a plastic tarp when using highly volatile chemicals, such as methyl bromide or chloropicrin, or when trying to control pests at or near the soil surface. Two other soil sealing methods are mechanical compaction (cultipacking, rolling, dragging) and light irrigation. If injection shank traces are present after treatment, disc them before sealing. For water seals, lightly water (to wet) the top inch or so of soil. Maintain that soil moisture throughout the exposure period. For optimum effectiveness, seal the soil as the fumigation progresses.

Exposure period varies depending on the pest organisms, the fumigant type and rate, soil moisture, and soil temperature. After the application and soil sealing, leave the soil undisturbed for the specified amount of time specified by the product label.

Soil aeration may be necessary at the end of the fumigation “exposure period” to allow any fumigant in the soil to dissipate. Once the soil is properly aerated, growers can plant the crops or plants without concern for phytotoxicity.Application rate and depth, soil moisture, soil temperature, and sealing methods govern aeration times. Cool, moist soils tend to retain fumigant longer, requiring longer aeration periods. Cultivating the soil to the depth of fumigant application often aids aeration. Refer to the label to determine exposure times and aeration recommendations. Planting a test sample of seeds may be warranted in certain situations to ensure that no phytotoxic effects occur on highly susceptible plants.

Phytotoxicity refers to plant injury and is a major concern when using soil fumigants. Most soil fumigants need to be applied weeks or months prior to planting because of potentially phytotoxic effects. Some plants or crops are very sensitive to small traces of soil fumigants, and phytotoxicity occurs when they are planted into soils where fumigant is still present. Read the fumigant label for specific precautions when planting certain plant varieties after fumigation. A minor concern is off-target movement (such as drift and runoff). Fumigant may escape through the soil surface and drift onto nearby susceptible plants. Rain or over irrigation may cause runoff. Pay close attention to what is planted on or is inhabiting areas near the application site.

Test Your Knowledge

Q. What are the three fumigant formulations and what do they have in common?

A. Liquefied gases, volatile liquids, and solids. They all convert to or volatilize into a gas when released into the soil.

Q. What pests may be controlled by soil fumigation? Why is it important to know about their life cycle and habits?

A. Soil pests, such as plant parasitic nematodes, fungi, insect, bacteria, weeds and weed seeds. Understanding their habits gives you information for proper timing of fumigant application and to target the susceptible stage of the pest.

Q. What factors are important in determining the placement of fumigants in soil?

A. A combination of factors are important in determining where to place the fumigant in the soil. These include where the pest organism lives, soil temperature, dosage of fumigant, soil type, and vapor pressure of fumigant.

Q. What influence does soil texture have on fumigant movement and availability? What type of soil requires more fumigant to attain a lethal dose?

A. Soil texture influences the amount of soil pore space and the number of adsorption (binding) sites. Clay soils require more fumigant because these fine textured soils have many more binding sites and pore spaces than coarse textured soils.

Q. What is the purpose of sealing the soil following fumigation? Must all soil fumigations be covered with a plastic tarp?

Sealing the soil maintains a lethal gas concentration for the exposure period by minimizing the amount of fumigant that escapes into the atmosphere. Plastic tarps are used for methyl bromide and chlorpicrin soil fumigations, but soil compaction and water seals are used for other fumigants.

BACK TO TABLE OF CONTENTS


CHAPTER 3: Application Principles

Learning Objectives

After you complete your study of this chapter you should be able to:

  • Identify application techniques and equipment used to apply fumigants to soil.

Application Techniques and Equipment

Various types of soil fumigant application equipment are commercially available. Appropriate soil incorporation equipment and soil sealing equipment should follow or be attached to the fumigant equipment. Good fumigation equipment is expensive to build and maintain. Sometimes it is necessary to buy custom designed and built equipment for specific purposes. Because fumigants are highly corrosive, equipment manufacturers must construct equipment from materials tolerant or resistant to these chemicals. Proper care of fumigation equipment is essential. Clean application equipment immediately after use, and cover or coat all parts with a lightweight fuel oil before storing.

Liquefied Gas

Example: methyl bromide

Above Ground Applications. Several devices are commercially available for applying liquefied gases to small areas, such as greenhouse growing media and nursery soil. Cover soil to be treated with plastic. Release fumigant through a plastic tube to an evaporation pan placed under sealed plastic.

The fumigant flows under pressure from the delivery of the gas to the evaporation pan. Use a separate pressurized cylinder of nitrogen to maintain a constant pressure to the fumigant cylinder ensuring a uniform application rate. Equipment used with pressurized cylinders can be complex. The applicator must be certain that the application systems are designed to deliver and withstand the pressurized fumigant.

Injection Applications. For overall field (broadcast) application of liquefied gases, such as methyl bromide, apply the fumigant using a tractor with sufficient horsepower to pull shanks (chisels) through the soil at the required depth and speed. For shallow applications (6–12 inches), mount shanks 12 inches apart on a tool bar connected directly to a machine that lays a plastic tarp. For deep applications (18–30 inches), mount shanks up to 66 inches apart, depending upon fumigation conditions. Fumigant delivery rates depend on equipment speed and flow rate of the chemical.

The most commonly used machine to seal the soil with a plastic tarp consists of two discs that open small furrows immediately outside the area to be treated. These discs connect to a device that unrolls polyethylene plastic over the treated area. Small press wheels insert the plastic into the open furrows. Closing discs seal the plastic by throwing soil back into the furrow.

To treat a field on a broadcast basis, apply one strip as described above, then remove and replace one set of discs with an adhesive dispenserSeal one side of the second plastic sheet using the adhesive to the first plastic sheet, and seal the other side of the second plastic sheet in the furrow made by the remaining discs. Repeat to fumigate and cover the entire field with plastic. The same type of fumigating equipment also is suitable for band applications (strip or row applications). For deep (18–30 inches) injections, sealing with a plastic tarp may not be necessary, depending on the target pests.

Auger Applications. Use augers in perennial crops, such as deciduous fruits, nuts, vineyards, etc. Use them with either 1- or 1½-pound seamless cans or with large cylinders of gaseous fumigants. After the auger digs a hole approximately 5 feet deep, release the fumigant into the hole at the proper dosage, and then fill the hole and compact for a soil seal.

Volatile Liquids

Examples: 1,3 dichloropropene, chloropicrin, metam sodium

Trench Applications. To treat very small areas, such as ornamental planting beds, place the prescribed dosage of liquid fumigant in a small container. Pour the liquid into the bottom of a furrow 6 to 8 inches deep. Cover and seal trench. Form a water seal using a small amount of water.

Handgun Applications. To treat small areas, such as experimental plots and nursery beds, use equipment with a holding tank connected to a hollow pointed base for penetrating the soil. A plunger device or drip device releases a known quantity of fumigant for each penetration.

Shank (Chisel) Applications. This method is the one most commonly used to treat large-scale areas, such as agricultural crops. Make field applications using tractors with sufficient horsepower to pull the shanks through the soil at the required depth and speed. Narrow knife-like shanks (such as forward-swept shanks) inject fumigant. Metal delivery tubes attach to the trailing edges of the shanks. Delivery tubes release the fumigant in the bottom of the furrow made when pulling the shank through the soil. For broadcast applications, shank spacing usually equals the depth of injection.

Maintain constant pressure to the metering pump, such as electrical or hydraulic pumps, power takeoff system (PTO), or ground-wheel drive. Regulate delivery rate using various combinations of pressure, nozzle orifice, shank spacing, and speed of travel, depending on the pressure system serving the metering pump.

Shank equipment works for broadcast or band applications. For row applications, use equipment with either one or two shanks to treat only the soil where the crop will be planted. Seal the application with a plastic tarp or by mechanically compacting soil. If injection shank traces are present, disc soil to remove traces prior to sealing the soil.

Sweep or Blade Applications. Attach fan shaped sweeps or blades equipped with evenly spaced fumigant outlets to the shanks and draw them through the soil. Seal the application with a plastic tarp or by mechanically compacting the soil. If blade shank traces are present, disc soil to remove traces prior to sealing the soil.

Drench Application. Add the fumigant to water and drench the soil with this solution. This method is useful in nurseries, ornamental plantings, and orchards.

Chemigation. To fumigate soil by chemigation, meter and inject a liquid fumigant into irrigation water. Fumigant chemigation is applied through several types of irrigation systems, most commonly center pivots. Equipment includes an injection pump and nurse tank system. Proper setup includes check valves between the injection pump and both the fumigant supply and the water source. Keep all screens and filters clean. Use as large a droplet as possible to avoid loss of fumigant through volatilization in the air.

Chemigation often requires pre-irrigation to bring the field to the desired moisture level prior to fumigation. Moisture levels must be even throughout the field. Chemigation requires a high degree of attention to detail, an understanding of the equipment used, and constant monitoring during the application.

Volatile Solids

Example: dazomet

Broadcast Applications. Apply granules evenly over the soil and incorporate them, or inject the granules into the soil. For small scale applications, use a shaker and apply over the area. Incorporate granules into the soil and seal. For large-scale applications, use a granule spreader to broadcast treat and then incorporate, or use a fertilizer drill or granule distributor that will deliver the granules at the desired depth. Adjust application rate by changing the size of the opening from the hopper or by altering the speed of travel. Immediately after spreading, incorporate granules into soil to the proper depth using a rotary hoe or disc. Seal soil with a mechanical compactor.

TEST YOUR KNOWLEDGE

Q. Are liquefied gas fumigants applied by gravity flow or under pressure?

A. Liquefied gas fumigants flow under pressure from the container to the soil to be fumigated.

Q. Delivery rate of liquid fumigant applications is affected by what factor(s)?

A. Delivery rate can be regulated by various combinations of metering pump pressure, nozzle orifice, shank spacing, and speed of travel.

BACK TO TABLE OF CONTENTS


CHAPTER 4: Equipment Calibration


CHAPTER 5: Soil Fumigant Uses and Characteristics

Learning Objectives

After you complete your study of this unit, your should be able to:

  • Describe the characteristics of the chemicals used as soil fumigants.
  • Know placarding requirements for the transportation of methyl bromide and chloropicrin.
  • Know the purpose and function of chlorpicrin in methyl bromide formulations.

Methyl Bromide

Methyl bromide is one of the most widely used soil fumigants. Methyl bromide is registered as a pre-plant treatment on a limited number of food crops as a soil fumigant. The food crops include strawberries, tomatoes, onions (dry bulb), peppers, cauliflower, broccoli, muskmelon hybrids (excludes watermelon), pineapple, eggplant, asparagus, lettuce, and Florida citrus. It also may be used on nursery and greenhouse soils, seed and transplant beds and turf, non-food crops, tobacco, and greenhouse tomatoes.

Methyl bromide is a liquefied gas when it is stored under pressure in 1 or 1½-lb cans or in cylinders containing several hundred pounds of product. The compressed liquid readily vaporizes into gas when the cans or cylinders are opened in temperatures above 39°F. Methyl bromide is odorless, nonflammable, and generally not irritating to the eyes or skin during exposure but serious skin or eye injury may appear later.

Since methyl bromide by itself has no irritating qualities to indicate its presence, many formulations contain chloropicrin as a warning agent. Chloropicrin has a strong odor and is very irritating to the eyes. All methyl bromide formulations registered for soil fumigation must contain chloropicrin. Mention of methyl bromide as a soil fumigant in this manual is with the understanding that chloropicrin is part of its formulation.

When transporting any amount of methyl bromide, one should place a warning placard with the word “POISON” on the outside of the vehicle. Technically, placarding for methyl bromide is not required unless it is being transported in containers larger than 1 liter which includes cylinders or case lots of 1-pound or 1½-pound cans. Thus, when transporting only one or two individual 1-pound or 1½-pound cans of methyl bromide, placarding is not necessary. However, if transporting many individual small cans, each less than 1 lite,rbut the gross weight of all containers and products exceeds 1,000 pounds, then the vehicle does have to be placarded. To protect human life, if your vehicle is involved in an accident, it is strongly recommended that you take all necessary precautions, including placarding the vehicle, whenever you transport any amount of methyl bromide over public roads.

Chloropicrin

Chloropicrin has general biocidal activity. It is most active against soil fungi and insects with limited activity on weed seeds and nematodes. Chloropicrin is generally combined with other fumigants, such as methyl bromide and 1,3-D to increase the range of pests to be controlled and as a warning agent when added to odorless methyl bromide. When added to methyl bromide formulations at a concentration of 2% or less, it is considered to be only a warning agent. When used at concentrations greater than 2%, it is considered to be an active ingredient that augments the fumigant activity of methyl bromide. Chloropicrin is a yellowish liquid that vaporizes slowly when exposed to air at room temperature. It should not be used at temperatures below 40°F.

Placarding requirements for transporting chloropicrin are the same as those described for methyl bromide (except that chloropicrin is not available in small cans).

Metam-sodium

Metam-sodium (sodium-N-methyldithiocarbamate) is also known as metam sodium and SMDC. It is a nonflammable volatile liquid formulated in a water-soluble solution and is sold under a variety of trade names, the most common of which is Vapam®. It has been registered since 1954 for use as a preplant fumigant on a wide range of crops. It is active on some weeds, weed seeds, insects, nematodes, and soil-inhabiting fungi. When it is applied to soil, it decomposes in water to release the gas methyl isothiocyanate (MITC).

Do not apply metam sodium within 3 feet of the drip line of desirable plants. Metam sodium is toxic to fish; do not apply it directly to water or allow runoff from treated areas to enter surface wate.r Also be aware that metam sodium is corrosive to brass and copper; use application equipment that is made of chemical-resistant materials.

1,3-D (1,3-Dichloropropene, Telone®)

1,3-D, sold as Telone®, is an organochlorine chemical comprised of 1,3-dichloropropene and related chlorinated hydrocarbons. It is a volatile liquid and is sometimes formulated with chloropicrin to increase its efficacy against soil fungi, particularly Verticillium. It is registered for use on a wide range of field and vegetable crops, ornamentals, turf, tobacco, mint and some fruit crops. It has activity against nematodes and certain arthropods, specifically wireworms and symphylans. It is effective on some weeds or weed seeds and a few fungi at higher fumigant rates. It should not be used on heavy clay or muck soils.

Dazomet

Dazomet is used as a preplant fumigant to control germinating annual and perennial weeds and other pests on ornamental seed beds, forest seed beds, turf seed beds, and in potting soil. It is ineffective against cyst nematodes.

Dazomet is available in three dry formulations: wettable powder, granule, and dust.Within 10 minutes after application, dazomet, in the presence of moisture, begins to break down. This chemical degradation results in the release of MITC, formaldehyde, hydrogen sulfide, and monomethylamine. These vapors interact to produce a potent killing agent. Soil pH does not affect this reaction.

Dazomet is toxic to all living plants, therefore do not apply it within 3–4 feet of desired plants or within the dripline of trees or shrubs. The vapors are toxic to crops planted within three weeks after treatment, and exposure to vapors in the greenhouse can make workers ill.As with other fumigants, dazomet is toxic to fish; do not apply it directly to water or allow runoff from a treated area to enter surface water. Because it decomposes at high temperatures, dazomet should not be used when temperatures are above 90°F.

Test Your Knowledge

Q. Describe the characteristics of methyl bromide.

A. Methyl bromide is a colorless, odorless, nonflammable gas that is a liquid when stored under pressure.

Q. What purpose does chloropicrin serve when it is formulated with methyl bromide?

A. Chloropicrin has a strong odor, is very irritating to the eyes, and is used as a warning agent in methyl bromide formulations. When it is present in methyl bromide formulations at concentrations greater than 2% it is an active ingredient in addition to being a warning agent.

Q. Are there any methyl bromide formulations registered for soil fumigation that do not contain chloropicrin?

A. No, all methyl bromide formulations registered for soil fumigation must contain chloropicrin.

Q. What must be done when transporting methyl bromide and chloropicrin?

A. One should place a warning placard with the word “POISON” on the outside of the vehicle. Technically placarding is required when methyl bromide is transported in containers larger than one liter; however it is recommended to placard the vehicle when any amount of methyl bromide is transported.

Q. Both metam sodium and dazomet decompose (break down) in the presence of water/moisture to release what gas?

Both fumigants release methyl isothiocyanate (MITC) in the presence of water/moisture.

BACK TO TABLE OF CONTENTS


CHAPTER 6: Fumigation Safety

Learning Objectives

After you complete your study of this unit, you should be able to:

  • Select and use personal protective equipment to protect yourself when working with fumigants.
  • Select and use respiratory equipment for the fumigant you are using.
  • Know how fumigant poisoning can occur and how to recognize the symptoms.
  • Know the general first aid procedures for fumigant poisoning.
  • Know personal sanitation, safety and other good practices to follow when working with fumigants.

Introduction

Fumigants pose very special hazards and are extremely toxic to all forms of life, including humans. Only certified, knowledgeable applicators who are equipped to handle fumigant chemicals safely should attempt fumigation.

The first step in fumigation safety is to read the label of the fumigant product. Also read the material safety data sheets (MSDS) and any other labeling that accompanies the product. The fumigant label contains important information about the fumigant. Pay particular attention to these sections of the label: Precautionary Statements, Work Safety Requirements, Agricultural Use Requirements, Directions for Use and Storage, and Handling and Disposal Information.

Safety Precautions For Applicators

The next step to fumigation safety is to make sure all applicators and persons who will be in the application area are properly trained about the hazards of fumigants. Make sure they have received training in the proper operation and handling of safety and application equipment and proper use of the fumigant. Never fumigate alone.

Methyl bromide, chloropicrin, and 1,3-D are restricted use pesticides which means that they must be applied by or under the direct supervision of a certified applicator. Two trained persons must be present when methyl bromide is applied. Metam sodium and dazomet are not restricted use pesticides in Hawaii.

Make certain that applicators/handlers know what to do if a spill, leak, or accident occurs. All persons who apply fumigants must be trained in the proper use of safety and application equipment and instructed in first aid and other emergency procedures, including personal decontamination. All accidents must be reported immediately to the employer or supervisor. Any indications of illness or physical discomfort should also be reported, regardless of how minor they seem.

Personal Protective Equipment

The best way to avoid fumigant poisoning is to always wear the proper personal protective equipment. Each fumigant has specific personal protective equipment (PPE) requirements. Read and follow the label for specific PPE required for application and handling of each fumigant product.

The liquid and dry fumigants metam sodium, 1,3-D, and dazomet require the use of various types of PPE, such as gloves, boots, and coveralls. However, when handling or applying methyl bromide or chloropicrin wear a loose fitting or well ventilated long-sleeved shirt and long pants, shoes and socks, full face shield or safety glasses with brow arid temple shields. Do not wear jewelry, gloves, goggles, tight clothing, rubber protective clothing or rubber boots when handling methyl bromide or chloropicrin. These fumigants are heavier than air and can become trapped between such items and the skin, causing skin irritation or injury.

Keep an emergency supply of water available at all times for rinsing the body and eyes. Some fumigants are irritating to the skin or eyes, and a few are vesicants (cause burns and blisters on the skin).

All fumigants can cause poisoning by a single large exposure. Some can cause poisoning through repeated small exposures. Keep soil fumigants off clothes, especially shoes.Wash all contaminated clothing separately from your regular laundry, and shower daily when exposed to fumigants. Keep an extra set of clean coveralls available.

The label describes the hazards of specific fumigants, symptoms of poisoning, and first aid in case of poisoning. Read these instructions carefully. The label also provides information for physicians when treating fumigant exposure.Take the label or MSDS to the physician when seeking treatment for fumigant exposure.

Respiratory Protection for Fumigant Application

Read the label to determine the appropriate respiratory protection for the fumigant you are using. Respiratory protection is needed when fumigating soil with methyl bromide and/or chloropicrin, if the air concentration level in the working area is above 0.1 ppm for chloropicrin or above 5 ppm for methyl bromide. The respirator must be one of the following types:

(a) a supplied-air respirator (MSHA/NIOSH approval number prefix TC-19C) or

(b) self-contained breathing apparatus (SCBA) (MSHA/NIOSH approval number prefix TC-13F).

Under normal out-of-doors soil fumigation conditions, the air concentration levels of chloropicrin and methyl bromide in the working area will not generally exceed these levels; therefore, no respiratory protection is required to be worn. However, the specified respiratory equipment is required to be available at the fumigation site in the event of a leak or spill.

When handlers are performing direct contact tasks with the liquid soil fumigants, 1,3-D and metam sodium, they must wear a respirator with either an organic vapor-removing cartridge with a prefilter approved for pesticides (MSHA/NIOSH approval prefix TC-23C) or a canister approved for pesticides (MSHA/NIOSH approval number prefix TC-14G.

Threshold Limit Values

The Environmental Protection Agency (EPA) has established Threshold Limit Values (TLVs) for several fumigants. The TLV is the maximum concentration of fumigant in the surrounding air that unprotected workers can be exposed to over the course of an eight-hour work day with little or no risk to one’s health. Anyone entering areas which exceed the established TLV must wear respiratory protection. The TLVs for the following fumigants are:

  • 5 ppm for methyl bromide
  • 0.1 ppm for chloropicrin

Fumigant Poisoning

A person can be poisoned by a fumigant in three ways: by mouth (orally), by skin absorption (dermally), or by breathing vapors (inhalation).

Inhalation of a fumigant is the most common and most serious type of exposure.

A fumigant applicator may be poisoned orally by:

  • not washing hands before eating, smoking, or chewing tobacco.
  • accidentally applying fumigants to food.
  • carelessly or accidentally splashing the liquid phase of a fumigant on the face.

Dermal poisoning may occur by:

  • accidentally or carelessly splashing skin with the liquid phase of a fumigant.
  • allowing contaminated clothing to touch skin or wearing contaminated clothing.
  • applying fumigants in windy conditions. 

Inhalation of fumigants can occur by:

  • inhaling fumes from fumigants during application (This is almost impossible to avoid if you are not wearing a respirator)
  • inhaling fumes when aerating treated soil or removing gas-confining tarp.
  • inhaling fumes while preparing fumigants (opening cans), or disposing of containers. (See label for respiratory protection requirements when handling containers.)

Recognizing Fumigant Poisoning Symptoms

Every applicator must learn the symptoms of pesticide poisoning. Signs of illness may include, but are not limited to, any or all of the following symptoms: dizziness, diarrhea, nausea, headache, and lack of coordination. The symptoms of specific fumigant exposure or poisoning are described below:

Methyl Bromide

Methyl bromide can produce chemical burns on the skin, respiratory tract, and other exposed tissue, cause pneumonia, kidney damage, and extreme nervousness. Any of these effects can be fatal. If smaller amounts of methyl bromide are inhaled, symptoms are similar to drunkenness. Methyl bromide is cumulative, that is, repeated exposures to doses will accumulate in the body tissue. Such exposure may produce skin rashes, mental confusion, double vision, tremors, slurred speech, and lack of coordination. Since methyl bromide by itself has no irritating qualities to indicate its presence, chloropicrin is added as a warning agent to many formulations. Chloropicrin emits an odorous gas and is very irritating to the eyes.

In acute exposures to methyl bromide, the effects are on both the respiratory and the central nervous system. The onset of respiratory distress may be delayed four to twelve hours after exposure. Methyl bromide may act as a lung irritant causing mild bronchitis to respiratory failure. Symptoms may include cough, chest pain, labored breathing, and eventually wet breathing, often complicated by broncho-pneumonia.

Central nervous system effects usually accompany or are followed by several hours of respiratory effects. Symptoms include intense nausea and vomiting, dizziness, double or blurred vision, unusual fatigue, headache, loss of appetite, abdominal pain, staggering gait, and slurred speech. Convulsions may result as symptoms progress. Following excitation, central nervous system depression may intervene. Muscle weakness and respiratory paralysis may occur.

Chloropicrin

Chloropicrin is severely irritating to the upper respiratory tract, eyes, and skin. It is a powerful tear gas. Chloropicrin has a strong odor and is very irritating to the eyes at concentrations as low as 1 ppm. If taken orally, it can cause nausea, vomiting, colic, and diarrhea. Severe skin injury can result from dermal exposure. Inhalation of an irritant concentration sometimes leads to vomiting. Prolonged respiratory exposure may lead to severe lung injury.

Metam sodium (Vapam®)

Metam sodium is irritating to the eyes and skin, and may be fatal if absorbed through the skin. Inhalation of MITC may cause irritation to mucous membranes and respiratory distress. The earliest symptoms of inhalation exposure include tearing and a runny nose, followed by coughing if the exposure continues. These symptoms disappear soon after the victim gets to fresh air. Dermal exposure may cause bums; repeated or prolonged exposure may cause a hypersensitive type dermatitis. Contamination of the skin should be treated immediately with copious amounts of water to avoid burns and corneal injur.y If skin or eye irritation persists, seek medical attention.

1,3-D (1,3-Dichloropropene, Telone®)

The liquid and gaseous forms of 1,3-D are toxic. Label warnings indicate it may be fatal ifswallowed, absorbed through the skin or inhaled. Exposure to l,3-D causes substantial, but temporary eye injury. It causes skin irritation and, if confined, skin bums. It may cause an allergic skin reaction. Prolonged contact may cause lung, liver, and kidney damage and respiratory system irritation.

Dazomet

Oral exposure to dazomet may produce symptoms of nonspecific irritation of the gastrointestinal tract: nausea, vomiting, cramps, and diarrhea. In severe cases, central nervous system depression may result. Skin or eye contact may result in irritation, and occasional individuals may exhibit allergic reactions. Inhalation of the dust or powder may result in nonspecific irritation of the upper respiratory tract.

First Aid

  • First aid instructions are on the fumigant label and material safety data sheets (MSDS). Some general first aid procedures may involve the following:
  • For inhalation, remove exposed person from contaminated area. Keep warm. Make sure person can breathe freely. If breathing has stopped, begin artificial respiration. If not unconscious, rinse mouth out with water. Do not give anything by mouth to an unconscious person.
  • For dermal exposure, immediately remove contaminated clothing, shoes, and any other items on skin.Wash contaminated skin area thoroughly with soap and water.
  • For eye exposure, hold eyelids open and flush with a steady, gentle stream of water for at least 15 minutes.
  • For ingestion, if a liquid or dry fumigant has been swallowed, the most important consideration is whether or not to induce vomiting; the decision must be correct and accurate. Always refer to the pesticide label for help in making that decision. If vomiting is recommended, the label will give specific instructions on how vomiting should be induced. Never induce vomiting if the victim is unconscious or is having convulsions.

In all cases of overexposure to fumigant pesticides, get medical attention immediately. Call 911. Take the victim to a doctor or emegr ency treatment facility. Take the fumigant labeling with you so the doctor will know how to treat the patient or can call a poison control center and get advice on proper treatment.

Antidotes are remedies that may relieve or neutralize poisoning. Antidotes may be suggested on some pesticide labels, but should be given only by physicians or others who are trained in their proper use.

Personal Sanitation

One way to avoid being poisoned by fumigants is to practice good personal sanitation habits such as the following:

  • Always have detergent and clean water close by in case of skin or eye contamination.
  • Have a complete, clean change of clothing ready in case clothing is contaminated.
  • If clothing or shoes become contaminated or if a fumigant gets on the skin, remove contaminated clothing and shoes, thoroughly wash exposed areas with detergent and water, and put on clean clothes and shoes.
  • Wash all contaminated clothing separately from your regular laundry.
  • Bathe and change to clean clothes daily.
  • Do not smoke, drink, or eat while loading or applying a fumigant or while repairing, calibrating, or cleaning equipment.
  • After fumigation operations always wash your hands and face with detergent and water before smoking, drinking, eating, or using the bathroom.

Other Safety Recommendations

Never fumigate alone! There should be at least two persons for a fumigation job. When a fumigated area must be entered, use a “buddy system” of at least two persons. Make sure that employees actively taking part in a fumigation procedure are in good physical condition. Fumigators should have a physical examination at least once a year and more often if health conditions require it. Fumigation businesses should maintain up-to-date health records for each employee. Fumigators should abstain from alcoholic beverages and taking any drug for 24 hours before and 24 hours after a fumigation job. Fumigators should not participate in a fumigation procedure if they have a cold or other respiratory problem that makes breathing difficult. They should not participate in a fumigation procedure while undergoing continuing medical or dental treatments unless authorized to do so by the physician or dentist in charge.

Good Practices To Follow When Fumigating

  • Become fully acquainted with the fumigation site. Know the number and identification of the persons who routinely enter the area and the proximity of other persons and animals. Know the location of the nearest telephone or communication facility.
  • Post, or have with you, current emergency telephone numbers, such as the fire department, police, hospital, and physician.
  • Select a fumigant registered by the EPA for the work involved.
  • Study directions, warnings, antidotes, and precautions on the label and on the manufacturer’s instruction manual. Follow all the precautionary statements when handling the fumigant. Always wear the protective clothing and equipment specified on the fumigant label.
  • Arrange for standby equipment, replacement parts, and an alternate plan of action. Besides the precautions previously mentioned, there are other general precautions to take when fumigating:
  • Inform all employees of the operational schedule, potential hazards to life and property, and the required safety measures and emergency procedures.
  • Prepare warning signs for posting treated areas. Have available first aid equipment and antidotes where applicable. Be alert to the symptoms and signs of poisoning.
  • Make sure there are no open fires or motors within the area to be fumigated.
  • Make a final check to clear all persons and animals from the area to be fumigated.
  • Do not work alone when handling or applying fumigants.
  • Obey reentry and aerating precautions. Position yourself upwind when aerating soil (removing a gas confining tarp).

Test Your Knowledge

Q. What is the best source of information regarding personal protective equipment to use when working with fumigants?

A. The fumigant label is your best source of information about the kind of personal protective equipment must be worn when using fumigants.

Q. Why should you not wear rings, wrist watches, or gloves or goggles when handling methyl bromide or chloropicrin?

A. These fumigants are heavier than air and can be trapped between such items and the skin, causing injury.

Q. Is respiratory protection required when fumigating soil out-of-doors with methyl bromide or chloropicrin.

A. It is required to be worn, if the air concentration in the working area is above 5 ppm for methyl bromide and above 0.1 ppm for chloropicrin. Under normal out-of-door soil fumigation conditions, the air concentration levels for these fumigants will not generally exceed these levels.

Q. What kind of respirator do I need for methyl bromide and chloropicrin?

A. An air supplied respirator or a self-contained breathing apparatus. This equipment must be available when fumigating soil out-of-doors in case of a leak or spill.

Q. Inhaling small amounts of methyl bromide produces symptoms similar to ?

A. Drunkenness.

Q. What are the symptoms to metam sodium (Vapam) exposure?

A. Exposure to metam sodium produces skin and eye irritation and respiratory distress.

Q. How many people should be present when applying fumigants?

A. There should be at least two persons for a fumigation job. Methyl bromide labels require at least two trained persons be present.

BACK TO TABLE OF CONTENTS


CHAPTER 7: Storing, Handling, and Disposing of Fumigants

Learning Objectives

After you complete your study of this unit you should be able to:

  • Know how to store soil fumigants.
  • Know how to dispose of soil fumigants.
  • Know what must be done to manage hazardous materials.
  • Know how to manage a soil fumigant leak or spill.

Storage of Soil Fumigants

Store fumigants in a locked, dry, cool, well ventilated area. Post the area as a pesticide storage area. Cylinders containing methyl bromide may be stored outdoors in a secure manner under ambient conditions or indoors in a well ventilated area. Do not contaminate water, feed, or food by storage. Do not store in buildings where humans or animals live.

To shorten the storage period, purchase fumigants just before you use them or have them delivered just before you use them. Post temporary storage areas as a pesticide storage area.Vapors can escape from faulty valves or from damaged or corroded cans and build to dangerous concentrations in closed storage rooms. Install an exhaust fan for ventilation to help reduce high concentrations of toxic vapors and to hold temperatures down. Run the ventilator to clear the air before anyone enters the storage area. Check the containers and valves frequently for possible leaks.

Fumigant cylinders should not be subjected to rough handling or mechanical shock such as dropping, bumping, dragging, or sliding. Do not use rope slings, hooks, tongs, or similar devices to unload cylinders. Store cylinders upright, secured to a rack or wall to prevent tipping. Transport cylinders using a hand truck, fork truck, or other device to which the cylinder can be firmly secured. Do not remove the valve protection bonnet and safety cap until immediately before use. Replace the safety cap and valve protection bonnet when cylinder is not in use.

When the cylinder is empty, close the valve, screw the safety cap on to the valve outlet, and replace the protection bonnet before returning the cylinder to the shipper. Do not use cylinders for any other purpose.

Store 1-pound and 1½-pound cans of methyl bromide fumigant in the same manner as cylinders.

Disposal

Fumigant labels provide instructions for the proper disposal of excess fumigant and its container. Always refer to the label for such information.

Fumigants are toxic to fish and wildlife. Keep them out of lakes, streams, and ponds. Do not contaminate water when cleaning equipment or disposing of pesticide wastes.

Wastes containing methyl bromide or 1,3- dichloropropene (the latter being an ingredient of 1,3-D) are considered hazardous by the EPA. Therefore, disposal of such wastes is strictly regulated under the Resource Conservation and Recovery Act (RCRA). If such wastes cannot be used according to label directions, they must be disposed of in a licensed hazardous waste management facility.

Return empty cylinders of methyl bromide to your chemical supplier or manufacturer. Be sure to follow their recommendations when transporting and returning emptied cylinders. Before you return a partially filled cylinder, contact the manufacturer or supplier for specific transportation instructions, and tag the cylinder so that the person receiving it will know it is not empty. Likewise, tag any cylinders which are or seem to be defective in any way.

Emptied smaller containers (1-pound and 1½- pound cans) of methyl bromide may not require special treatment but should be crushed after aeration. Thoroughly emptied and aerated containers may then be disposed of in a sanitary landfill.

Follow label directions relating to container management for 1,3-dichloropropene (1,3-D, Telone®) products. Follow cleaning and handling directions in user’s guide for the product for refillable containers and follow label directions for nonrefillable container disposal.

Return empty cylinders of chloropicrin to the supplier or manufacturer. Plastic containers of chloropicrin and metam sodium (Vapam®) should be triple or pressure rinsed and offered for recycling or disposed of in a sanitary landfill.

If you have any questions about disposal of fumigant waste, contact one of the education specialists at the Pesticides Branch, Hawaii Department of Agriculture: Oahu 973-9401, Maui 873-3555, Hawaii 974-4143. The area code for these telephone numbers is 808.

Hazardous Materials Management

Because pesticides (including fumigants) can be hazardous to people and wildlife, reports must be made to certain county, state, and federal government agencies for purposes of chemical emergency planning and chemical emergency response. The reports must be made (1) when a specific quantity of a fumigant is stored at a facility or (2) when a specific quantity of a fumigant spills or leaks. (Applying a fumigant according to its labeling does not count as a spill or leak.)

The federal law that set up this reporting system is the Emergency Planning and Community Right-to- Know Act (EPCRA). This law is also called “SARA Title III” because it is actually part of a more comprehensive law known as the Superfund Amendments and Reauthorization Act (SARA).

The quantities that trigger the reporting requirements are set (and may be changed) by the US Environmental Protection Agency (EPA), a branch of the federal government.

When considering fumigants in storage, the threshold planning quantity (TPQ) is the number of pounds of fumigant active ingredient that triggers the reporting requirement whenever the fumigant is present at a facility. For example, EPA set 1,000 pounds as the TPQ for methyl bromide. This means that when 1,000 pounds or more of the active ingredient methyl bromide is present at a facility, the owner or manager or the storage facility must make the report. Reports must be made annually to: (1) the Hawaii State Emergency Response Commission, (2) the local emergency planning committee for the county in which the fumigant is stored, and (3) the fire department for the county in which the fumigant is stored.

Hawaii has four counties: Kauai, Honolulu City & County (for Oahu), Maui (for Maui, Molokai, and Lanai), and Hawaii.

When considering a fumigant spill or leak, the reportable quantity (RQ) is the number of pounds of active ingredient that triggers the reporting requirement for the fumigant that has spilled or leaked. For example, EPA set 100 pounds as the RQ for 1,3-dichloropropene (the active ingredient in Telone®). This means that when 100 pounds or more of the active ingredient 1,3-dichloropropene spills or leaks, the owner or manager of the fumigant container(s) must make the report. Reports must be made immediately to: (1) the Hawaii State Emergency Response Commission, and (2) the local emergency planning committee for the county in which the fumigant spills or leaks. Further if the release occurs in a transport accident (3) the National Response Center must be notified. Also, a follow-up report must be made after the emergency.

To learn more about TPQs, RQs, and reporting requirements, consult the Hawaii Department of Health’s Office of Hazard Evaluation and Emergency Response (HEER). Here’s the contact information for the HEER office:

Hazard Evaluation and Emergency Response Office Hawaii Department of Health

919 Ala Moana Boulevard, Room 206

Honolulu, HI 96814

EMAIL heer@eha.health.state.hi.us

TELEPHONE 808-586-4294 (Honolulu)

FAX 808-586-7537 (Honolulu)

From Maui (toll-free): 984-2400 ext 64249

From Hawaii (toll-free): 974-4000 ext 64249

From Kauai (toll-free): 274-3141 ext 64249

From Molokai or Lanai (toll-free): (800) 468-4644 ext 64249

Website: “HEPCRA Compliance Information”: www.hawaii.gov/health/environmental/hazard/hepcra.html

Spill and Leak Clean- Up Procedures

Under normal conditions (outdoor applications, no spills or leaks), no respiratory protection will be required during soil fumigation. Because there is a possibility of a spill or leak, however the following spill and leak procedures must be understood and followed when fumigating the soil with methyl bromide or chloropicrin products.

If a spill or leak occurs from a cylinder containing methyl bromide, evacuate everyone from the immediate area of the spill or leak. Wear personal protective equipment prescribed by the label (including a NIOSH/MSHA approved self-contained breathing apparatus (SCBA) or a combination air- supplied/SCBA respirator) to go back into the affected area to correct the problem. The spill should be allowed to evaporate and no one should enter the spill area without respiratory protection until the concentration of methyl bromide is less than 5 ppm. Remove leaking containers to an isolated area and cover them with polyethylene sheeting. (tarp) at least Place the edges of the tarp in a trench and seal them with soil.

With spills or leaks of methyl bromide products containing high levels of chloropicrin, you must determine also that the concentration of chloropicrin in the surrounding air is less than 0.1 ppm before allowing unprotected persons to enter the area.

A spill of methyl bromide involving 1,000 pounds (the reportable quantity for methyl bromide) or more must be reported to the Hawaii State Emergency Response Commission and two other government agencies. If there is any contaminated soil, water, and other debris resulting from cleanup, they are classified as hazardous wastes.

In case of a rupture of hose or fitting while applying methyl bromide, immediately stop the tractor and motor. Evacuate the area. Use a NIOSH/MSHA approved SCBA or combination air-supplied/SCBA respirator for entry into the affected area to correct the problem. Approach the equipment from upwind to make necessary repairs. Do not reenter the area without respiratory protection until the spill has evaporated or the leak has been repaired, and the methyl bromide concentration in the surrounding air is determined to be less than 5 ppm.

For spills or leaks involving only chloropicrin, you alternatively may wear a NIOSH/MSHA respirator approved for organic vapors besides respirators approved for methyl bromide. Move the leaking or damaged container to an isolated location.Work upwind if possible.Allow spilled material to evaporate, or adsorb onto vermiculite, dry sand, earth, or similar adsorbent material. Dispose of contaminated material in accordance with instructions for soil fumigation. Do not permit anyone to enter the spill area or cleanup area without appropriate respiratory protection until the air concentration of chloropicrin is determined to be less than 0.1 ppm.

Test Your Knowledge

Q. What should be the storage conditions for fumigants?

A. Storage conditions for fumigants are the same as for other types of pesticides. Storage conditions should be dry, cool, and well ventilated. The facility should be locked and posted as a pesticide storage area.

Q. What should be done with the empty cylinders that held methyl bromide and/or chloropicrin?

A. Return empty cylinders to the dealer or the manufacturer.

Q. What should you do if there is a spill or leak from a cylinder containing methyl bromide?

A. Evacuate everyone from the immediate area of the spill or leak.

Q. What kind of respirator is needed when repairing a hose or fitting rupture on application equipment when making soil applications of methyl bromide?

A. A NIOSH/MSHA approved SCBA or combination air-supplied/SCBA respirator.

BACK TO TABLE OF CONTENTS


Glossary

Adsorption – binding to the surface

Arthropod – organism with an exoskeleton: insects, mites, spiders, centipedes, scorpions, pillbugs, shrimps, lobsters, crabs, Daphnia etc.

Bacteria – very small, one-celled organisms that reproduce by simple fission.

Band Application – placement of a pesticide in a strip either over or along the crop row.

Biocidal – has action to kill all organisms, including plants, animals, fungi, etc.

Broadcast Application – application made uniformly over an entire area rather than only over rows, beds, or small spots within a general area.

Chemigation – injecting agricultural chemicals (fertilizers, pesticides) into an irrigation system.

Complete (Complex) metamorphosis – life cycle of an insect; consist of four stages: egg, larva, pupa, and adult.

Cyst – form of some nematode females, oval not elongate.

Diffuse – move in all directions.

Ectoparasites – live outside of the organism on which they feed.

Egg – reproductive unit of nematodes, insects, and symphylans.

Endoparasite – live within the organism in which they feed.

Fission – division of one celled organisms into two progeny cells.

Formulation – the active and inert ingredients that make up a pesticide product (i.e., an emulsifiable concentrate or a granule).

Fumigant – penetrating gas.

Fungi – plant-like organisms that lack chlorophyll and conductive tissues; reproduce by spores.

Hazard – degree of danger; risk.

Hyphae – vegetative growth portion of fungi.

Insect – an animal with an exoskeleton and jointed appendages that has three body segments, three pair of legs, and sometimes wings.

Larva – an immature stage of an insect that undergoes complete metamorphosis.

MSDS – Material Safety Data Sheet.

Nematode – generally a microscopic, nonsegmented threadlike roundworm.

Organic matter – remains of plant and animal debris found in the soil in all stages of deca.y

Organism – any living thing; plant, animal, fungus, bacteria, insect, etc.

Parasitic – feeds on other organisms.

Phytotoxic – poisonous to plants.

Placard – a poster or notice giving information; to post a notice.

Pore space – area between soil particles that is filled with air or water.

Pupa – a stage in insect development between the larva and adult.

Sedentary – relatively immobile, does not move much.

Soil condition – usually referred to as soil tilth – is the physical condition of soil as related to its ease of tillage, fitness as a seed bed, and its resistance to seedling emergence and root penetration.

Soil texture – composition of the soil, in particular soil particle size; sandy (coarse), loamy, clay (fine).

Soil-borne – live in the soil.

Spore – reproductive unit of fungi.

Stylet – the sharp hard needle-like part in the head of plant-feeding nematodea; used to puncture plant cells and feed on the contents.

Symphylan – an animal with an exoskeleton and jointed appendages that has many body segments and legs, looks like a centipede.

Symptom – an expression, a sign, an indication of something wrong.

Target organism – plant or animal to which a control is directed.

Toxic – injurious to plant and/or animal, poisonous.

Vesicant – causes blisters.

Volatile – will evaporate readily.

Volatilize – to evaporate (i.e., to change from liquid to gas).

Weed – a plant that is undesirable where it is growing.


PRINT VERSION of this webpage

QUESTIONS OR PROBLEMS WITH THIS WEBPAGE? This on-line version is made and maintained in our office at the University of Hawaii's Manoa campus located in Honolulu, Hawaii. To comment, make suggestions, ask questions, or report any problems with this website, please contact Charles Nagamine, EMAIL: cynagami@hawaii.edu, TELEPHONE: (808) 956-6007, MAIL: P.E.P.S. Dept., 3190 Maile Way Room 307, Honolulu, Hawaii 96822.